ASYMMETRIC OXIDATION REACTION OF THERMALLY DECOMPOSED PRODUCTS OF meso-1,1'-DIPHENYL-1,1'-AZODIETHANE

Kenji YOSHINO, Yasukazu OHKATSU, and Teiji TSURUTA

Department of Synthetic Chemistry, Faculty of Engineering,

The University of Tokyo, Bunkyo-ku, Tokyo 113

meso-1,1'-Diphenyl-1,1'-azodiethane was thermally decomposed in the presence of the cobalt complex having an asymmetric ligand in benzene at 102°C in vacuo. The resulting reaction mixture reacted readily with oxygen to form products such as acetophenone and 1-phenylethanol, the latter being optically active.

In our previous paper $^{1)}$, we reported that organic radicals from 2,2',3,3'-tetramethyl-2,2'-azodibutyronitrile were stabilized by some metal complexes, particularly cobalt complexes such as α , β , γ , δ -tetraphenylporphinatocobalt(II) [Co(II)TPP]. When the cobalt complex has an optically active ligand, the radicals located at the central cobalt will be stabilized stereoselectively. Therefore, the radicals may undergo a stereoselective oxidation on reacting with oxygen.

We have now confirmed the formation of an optically active 1-phenylethanol by bubbling oxygen into a reaction system, in which meso-1,1'-diphenyl-1,1'-azodiethane(referred to as meso-azo compound) had preliminarily been subjected to thermolysis in the presence of N,N'-disalicylidene-(1R,2R)-1,2-cyclohexane-diiminatocobalt(II) (referred to as Co(II) (sal) $_2$ (R-CHXDA)) $_2$ 0 as an asymmetric complex.

A benzene solution of meso-azo compound and a cobalt complex(Co(II)(sal) $_2$ (R-CHXDA) or Co(II)TPP) was charged into an ampoule and degassed twice by means of a freeze-thaw method to remove oxygen. The ampoule was sealed $in\ vacuo$, and was allowed to stand in an oil bath at 102°C for 2 days. Thereafter, oxygen was bubbled into the reaction mixture at room temperature. After the oxidation, benzene was removed by freeze-drying method from the reaction mixture. The

remainder was separated into hydrocarbons(contained ethylbenzene, styrene, and 2,3-diphenylbutane) and a mixture of the cobalt complex and oxidation products (acetophenone and 1-phenylethanol) by column chromatography(hexane-silica gel). The latter was silylated using trimethylsilyl chloride, and was separated into the silylated 1-phenylethanol and the mixture of cobalt complex and acetophenone in the same manner as described above. The optical rotation were measured with the silylated 1-phenylethanol. Quantitative analyses of the products were carried out with glc, ir, and nmr.

The specific rotation, $\left[\alpha\right]_{D}$, of an authentic sample of the silylated S-(-)-1-phenylethanol was determined as $-49.5^{\circ}(c=0.965)$, $-48.9^{\circ}(c=1.97)$, and $-48.9^{\circ}(c=3.93)$ at 21°C in benzene. ir : $1250\text{cm}^{-1}(-\text{Si-C-})$, $841\text{cm}^{-1}(-\text{Si-C-})$, $757\text{cm}^{-1}(-\text{Si-C-})$, $1035\text{cm}^{-1}(-\text{Si-O-C-})$ nmr : $0\text{ppm}(\text{Si-CH}_{3})$ and TMS), $2.35\text{ppm}(\alpha-\text{methyl})$, $5.78\text{ppm}(\alpha-\text{hydrogen})$, 8.20ppm(phenyl) in $CDCl_{3}$. ($\left[\alpha\right]_{D}$ of S-(-)-1-phenylethanol³⁾ before silylation : $-48.2^{\circ}(c=0.568)$, $-45.2^{\circ}(c=1.14)$, $-44.4^{\circ}(c=2.27)$ at 21°C in benzene.)

Table 1 shows the yields of oxidation products and specific rotation of the silylated 1-phenylethanol. The main product from the reaction without cobalt complex (run 1: control) was 2,3-diphenylbutane, no oxidation products being obtained. It is noted that a cobalt complex is necessary for the formation of oxidation products as seen in runs 2-8. In these runs, a drastic decrease is seen in the yield of 2,3-diphenylbutane.

On the oxidation of the reaction mixture, which had been obtained by the thermolysis of meso-azo compound in the presence of Co(II)(sal)₂(R-CHXDA), an optically active 1-phenylethanol was obtained (runs 2-4). S-(-)-1-Phenylethanol was also obtained from a reaction mixture, which had been obtained by the thermolysis of meso-azo compound in the presence of Co(II)TPP, followed by oxidation with oxygen in the presence of Co(II)(sal)₂(R-CHXDA) as the second cobalt complex(runs 6,7 and 8). These results are explained as the consequence of the formation of 1-phenylethyl radical in the oxidation stage from PhCH(CH₃)-NH-N=C(CH₃)Ph, which is produced in decomposition stage and is easily oxidized with the aid of the cobalt complexes. 1-Phenylethyl radicals should be stabilized stereoselectively through a bonding onto Co(II)(sal)₂(R-CHXDA) as reported in the previous paper. Oxygen molecules are considered to be inserted into the bond between 1-phenylethyl radical and cobalt. The stereoselection in the oxidation

stage should be a consequence of the stereoselective stabilization of the radicals that was caused by the chiral circumstance around the central cobalt.

	n	Date of the same		0-431	0.4.	٠.	1 mbanulathamal
Table l	Reaction	Products	anu	Uptical	Data	UI	1-phenylethanol

			ex added	Products(%)					$\left[lpha ight]_{D}$ of silylated
run	meso-azo compd. (x10 ² M)	in decomp.	in oxidation stage	Ph I C-C	Ph C=C	Ph C-C OH	Ph C-C !!	Ph Ph C—C C C	product from l-phenylethanol obtained
0	4,25	0	0	1.6	0.4	0	0	95.0	-
1	4.25	0	[Co [*]]5.28	1.6	0.4	0	0	96.2	
2	4.24	[Co*]4.94	0	0.7	1.4	8.0	61.0	11.7	-5.1(c=1.58)
3	3.30	[Co]6.15	0	1.6	1.6	3.8	41.8	30.2	-0.4(c=0.82)
4	4.28	[Co]5.21	0	1.4	2.3	7.8	57.4	24.5	-2.1(c=0.99)
5	4.19	CoTPP 6.91	0	0.2	2.1	10.0	61.9	7.9	0(c=2.50)
6	4.19	CoTPP 6.91	[Co]5.28	0.6	2.7	10.6	67.0	7.4	-1.6(c=0.49)
7	4.22	CoTPP 6.85	[Co]5.28	0.4	2.7	15.3	63.5	8.9	-1.6(c=0.44)
8	4.22	CoTPP 6.64	[Co*]3.43	0.4	2.7	8.6	61.1	9.8	-1.2(c=2.35)

 $[Co*] = Co(II)(sal)_2(R-CHXDA)$

Decomposition Reaction Conditions: at 102° C in benzene for 2 days Oxidation Reaction Conditions: bubbling oxygen at room temperature for 5 min. with Co(II)TPP, and for 10-20 min. with Co(II)(sal)₂(R-CHXDA).

No oxidation reaction took place when hydroquinone as a radical scavenger was added, prior to the oxidation after the decomposition stage.

This is the first report that deals with the oxidation of an <u>optically inactive</u> meso-compound with molecular oxygen giving an <u>optically active product</u>. A previous report by Howard et al. dealt with the stereospecific autoxidation of an <u>optically active l-bromo-2-methylbutane</u> to an <u>optically active l-bromo-2-hydroxy-2-methyl-butane</u>.

References

- 1) K. Yoshino, Y. Ohkatsu, T. Tsuruta, Polym. J., 9, 275 (1977).
- 2) H. Aoi, M. Ishimori, S. Yoshikawa and T. Tsuruta, J. Organomet. Chem., <u>85</u>, 241 (1975).
- 3) According to V. Prelog, E. Phillin, E. Watanabe, and M. Wilhelm, Helv. Chim. Acta, 39, 1092 (1956), the $\left[\alpha\right]_D^{21}=-42.5^{\circ}(\text{neat})$.
- 4) J. A. Howard, J. H. B. Chenier, and D. A. Holden, Can. J. Chem., <u>55</u>, 1463 (1977).
- 5) K. Yoshino, Y. Ohkatsu, T. Tsuruta, unpublished data.
- 6) F. R. Jensen and R. C. Kiskis, J. Am. Chem. Soc., 97, 5825 (1975).

(Received May 10, 1978)